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Figure 1. We propose a motion generation pipeline where pre-defined keyjoints approach user-specified positional goals. The goals are
shown as green spheres, and our pipeline can adapt to the customized conditions, including novel scenes and goal conditions. We can
generate motions that reach for an object in cluttered scenes, climb a wall, or sit with specified hand positions.

Abstract

We propose a framework for goal-driven human motion
generation, which can synthesize interaction-rich scenar-
ios. Given target positions for key joints, our pipeline gen-
erates natural full-body motion that approaches the goal in
the cluttered environments. Our pipeline solves the complex
constraints in a tractable formulation by disentangling the
process of motion generation into two stages. The first stage
computes the trajectory of the key joints, such as hands and
feet, to encourage the character to approach the target posi-
tion while avoiding possible physical violation. We demon-
strate that diffusion-based guidance sampling can flexibly
adapt to the local scene context while satisfying the tar-
get goal conditions. Then, the subsequent second stage can
easily generate plausible full-body motion that traverses the
key joint trajectories. The proposed pipeline applies to var-
ious scenarios that have to account for 3D scene geometry
and body joint configurations concurrently.

1. Introduction

A goal-driven motion generation can streamline designing
diverse interactive full-body motion. For example, when
designing a character motion for grasping an item, setting
a hand goal first allows the user to efficiently formulate the
desired functionality. Similarly, the users may describe the
climbing motion by defining target positions or control the
sitting posture by specifying contact points on a chair. In
this paper, we propose a framework for generating natural
full-body motion when the goal is simply the position of the
key joints within a 3D scene. After a user intuitively defines
the desired interactions by providing the target positions for
the critical body parts, such as hands or feet, the system
can generate natural full-body motion that is adaptive to the
given condition.

Goal-driven motion requires satisfying part-wise goals
while maintaining plausible full-body motion that is adap-
tive to unseen scene layouts. Such interaction is a highly
challenging motion to generate. As the goals are defined on
the input 3D scene, only a few existing captured motion data



precisely follow the required movement defined at the test
time. We take inspiration from the recent advances in diffu-
sion models, which have shown impressive performance in
generative modeling, not only in image synthesis but also in
human motion generation. These models learn continuous
data distributions without collapsing and exhibit promising
capabilities for control, such as compositionality [11, 38] or
conditioning [72]. Another inspiration for enhanced con-
trol in diffusion models is guidance functions [6, 8, 52],
which successfully endow customized properties into the
outcomes via flexible sampling. We incorporate these tech-
niques to formulate a diffusion model that generates motion
approaching user-specified goals while avoiding collisions
in diverse scenes.

We construct a two-stage diffusion model, solving sim-
pler sub-problems to effectively tackle the overall complex-
ity. We first generate a key joint trajectory that is adaptive to
a customized goal position in a novel scene. Next, we gen-
erate natural full-body poses based on the predicted partial
key joints. The key joint trajectories serve as an intermedi-
ate representation that detaches the complexity of scene per-
ception and full-body generation. Both stages follow condi-
tional diffusion formulation. The first stage employs a guid-
ance function to sample the key joint trajectories that sat-
isfy the goal conditions while preventing collisions. Here,
our lightweight scene features provide the necessary spatial
context, and the full body layouts are estimated as bounding
boxes. The subsequent second stage composites the intri-
cate full-body motion that matches the sampled trajectories
of the partial key joints. While two-stage motion gener-
ation methods exist, prior work generates root trajectories
at the first stage, primarily focusing only on root control
[28, 48, 61]. In contrast, our approach prioritizes key joint
trajectories in Stage 1, enhancing controllability in practi-
cal scenarios such as goal-driven joint control with collision
avoidance.

We demonstrate that our proposed method can accom-
plish the task even in unseen scenarios or newly defined
goals without additional training. Our approach generally
applies to a wide range of tasks, such as climbing or contact-
designated sitting, where the precise control requirement is
provided as goal positions for the key joints. In Fig. 1, we
show various tasks that we could perform, with goals em-
phasized as colored spheres. In summary, our contributions
are as follows.
• We propose a two-stage pipeline that efficiently generates

motion that follows the goal positions of key joints while
adapting to the target scene.

• We introduce an effective diffusion-based pipeline, which
can generate plausible key joint trajectories that satisfy
complex constraints, even in novel scenarios.

• We demonstrate an effective 3D collision avoidance
method with lightweight scene features extracted around

sampled trajectories and bounding box estimates of the
body.

• Our approach broadly applies to the various interaction-
rich scenes requiring precise control to generate natural
full-body motions.

2. Related Work
2.1. Human Motion Generation

Recent progress in data-driven approaches for generative
models has witnessed remarkable advancements in human
motion generation. In addition to quality and natural-
ness, many practical applications require generating mo-
tions adaptive to diverse conditions. For example, several
works allow user to define the input conditions for motion
synthesis, such as text [3, 15, 16, 37, 44, 45, 59, 69, 71, 73],
music [35, 47, 51, 60] or paired object trajectories [5, 13,
33, 34, 54, 67].

We focus on generating human motions fulfilling practi-
cal tasks requiring interaction with diverse geometric lay-
outs. Previous works have long considered motion syn-
thesis in 3D environments. They investigate methods to
find plausible root trajectories and complete motions that
perform atomic actions such as sitting, walking, and ly-
ing [18, 36, 41, 41, 49, 61–63, 75, 76]. Many works
mainly consider extracting collision-free paths against clut-
tered environments. Some frameworks utilize space occu-
pancy [25, 39] or physics simulation [2, 4, 32, 42, 66, 70] to
avoid artifacts like penetration, but it is only applicable to a
certain range of simple geometries.

More recently, another line of works attempts to gener-
ate natural full-body motion especially when grasping an
object [55–58]. However, acquiring motion data is chal-
lenging in such scenarios, since it is hard to capture the de-
tailed body movements and the paired objects concurrently.
Therefore, previous attempts with existing grasping datasets
are prone to generate only a limited range of samples due to
the insufficient number of reference motions.

Our method especially focuses on generating a human
motion that requires a precise goal position for the specific
set of body segments. For example, the CIRCLE [1] dataset
contains various full-body motions of reaching for objects
in complex spaces. More datasets contain tasks requiring
sophisticated controls, such as climbing [68], sitting with
provided contact points against a chair [74], and motion
with contact points with a pre-scanned scene [22]. How-
ever, the datasets cannot extensively cover intervened con-
straints in real-world environments.

2.2. Diffusion Models and Controllability

Due to the capability to model complex distribution,
diffusion-based techniques have demonstrated exceptional
performance for generative modeling [9, 19–21]. Motion
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Figure 2. Overall pipeline of our method. Given a 3D scene S with a set of goal positions g and initial pose X̂1, our goal is to generate
smooth and natural full-body motion that reaches the specified goal. We first sample key joint trajectories {Cn} satisfying goal conditions
using guidance sampling on a diffusion model. Then we feed key joint trajectories {Cn} into full-body diffusion model and finally obtain
full-body motion {Xn}.

generation can also benefit from the flexibility of diffusion
models that allow sophisticated control of the distribution.
Some works [50, 64] employ inpainting techniques to gen-
erate motion given joint trajectories, while others [28, 48]
propose a diffusion structure that can modify motion based
on root trajectories. AGROL [12] demonstrates a diffusion-
based framework that reconstructs full-body motion from
tracking signals of sparse wearable sensors. Because our
task requires creating and matching the desired joint trajec-
tory in an unseen environment, we could also benefit from
the flexibility of diffusion models to control the distribution.

We incorporate recent formulations for conditional dif-
fusion to further enhance the control for the user-defined
task. ControlNet [72] architecture has emerged as a power-
ful framework for modeling and sampling high-dimensional
data distributions conditioned on input variables. It pro-
poses an additional neural network designed specifically to
control image diffusion models such that the results adapt to
task-specific control signals. OmniControl [65] pioneered
using the ControlNet architecture to generate full-body mo-
tion given a pre-defined joint trajectory. OMOMO [34] gen-
erates hand and body movements step by step based on the
motion of objects using conditional diffusion formulation.
Our work further provides intuitive yet flexible control as
the system automatically finds plausible key-joint traces in
more challenging environments.

Another way to control the output of a diffusion model
is leveraging differentiable guidance functions for flexible
sampling [10, 14, 24, 26, 27, 29, 53]. One can use a differ-
entiable loss function to define the necessary constraints for
the sampled results. Then, injecting the gradient of this loss
steers the output toward the desired form, generating flexi-
ble and controllable results. Leveraging guidance and prior
knowledge from pre-trained diffusion models, research has

made strides in solving linear inverse problems with loss
functions akin to the square form [6], or handling non-linear
generic loss functions [7]. Recent approaches [52] improve
the accuracy of gradients by utilizing multiple Monte Carlo
samples to estimate, thereby achieving a more precise ap-
proximation of the gradient. Works such as NIFTY [31]
demonstrate that guidance functions can generate more ac-
curate motion. However, such approaches only find the root
trajectory with a single object and do not achieve the deli-
cate level of control we propose. Our proposed approach fa-
cilitates the generation of natural motions with fine-grained
spatial control by combining conditional diffusion model-
ing with ControlNet-like architecture and flexible sampling
techniques and structuring a two-stage diffusion model.

3. Method

Given an initial pose of a human X̂1 and 3D goal positions
indicated g within a space S, our objective is to generate a
sequence of full-body poses {Xn} that eventually reach the
specified goal positions g. Key joints are manually selected
for each task, and goal positions are assigned per episode
to indicate the task-specific objective. The significant chal-
lenge here is to generate plausible and natural motions that
satisfy goal conditions while avoiding collisions with sur-
roundings at the same time.

To mitigate these complexities, we propose a two-stage
diffusion-based framework. Our framework employs a hi-
erarchical structure that initially generates key joint trajec-
tories {Cn} adhering to scene constraints, followed by the
creation of full-body motion {Xn} based on these trajec-
tories. In addition to the start and end positions of the key
joint trajectories, our diffusion process provides a guidance
about the potential scene obstructions by encoding the local
free space and approximate body configurations given the



key joint positions. Based on our lightweight scene fea-
tures, our model in the first stage finds the 6-DoF paths
for the key joint trajectory that effectively avoids collision
against cluttered scenes while smoothly approaching the
goal. Then, the next stage can complete a full-body se-
quence with frame-wise assistance of the key joint trajec-
tory. Our entire pipeline is shown in Figure 2.

Data Representation We select K joints from the total
joint set and compose our key joint trajectories {Cn} ∈
RN×d, where N denotes the length of the generated mo-
tion sequence. These trajectories Cn contain global xyz
position and global 6D rotation [77] of selected key joints,
making d = K × 9. For example, if we choose hands and
feet for the key joints, then d = 36. This global represen-
tation enables more direct gradient calculation with spatial
constraint-based guidance in Stage 1 without any additional
computation, resulting in more accurate sampling [52].

Our full-body motion representation {Xn}Nn=1 includes
N full-body poses Xn ∈ RD, where D represents the
dimension of human pose representation. For the object-
reaching scenario and the sitting with contact points task,
which involves walking motions, we utilized the Hu-
manML3D [15] representation by converting the root in-
formation into global coordinates, following the approach
in [28], where D = 263. For tasks requiring more nat-
ural transitions, such as climbing and contact-aware mo-
tion generation, we leverage the parametric human model,
SMPL [40], to reconstruct the human mesh at the end of
the generation process. The pose vector Xn ∈ RD contains
6 DoF pose of all the joints J and global root translation,
where rotations are represented as 6D vectors [77], there-
fore D = J × 6 + 3.

3.1. Stage 1: Key Joint Diffusion Model

Stage 1 generates key joint trajectories that are conditioned
on the body shape of the character and the 3D scene layout.
A typical denoising diffusion model Dθ depends on time t
and the additional conditioning feature c in the input data.
We employ a network architecture based on U-Net, which
learns to recursively sample to recover the original data dis-
tribution p0(x0) from a noisy version xt = x0 + σtϵ with
ϵ ∼ N (0, I). Plugging our formulation into the diffusion
model Dθ, the generated sample x corresponds to the se-
quence of key joint locations {Cn}Nn=1 and the input condi-
tion c is the SMPL shape parameter β and the scene S.

3.1.1 Guidance Function

Our diffusion process employs guidance functions to gener-
ate samples that precisely satisfy the given goal conditions
while avoiding collisions in complex environments. While
sampling from naı̈ve diffusion model may not flexibly adapt

Figure 3. Illustration of guidance functions. We measure the
distance between the goal position and corresponding joint for
Trajectory-Control Guidance. Also, we approximate the body
model into a union of the upper and lower body and calculate
Collision-Avoidance Guidance.

to novel conditions, we introduce two guidance functions to
assist the sampling process (Figure 3): trajectory-control
and collision-avoidance guidance. More details on the dif-
fusion process and the calculation of guidance can be found
in the preliminary section of the supplementary material.

Trajectory-Control Guidance Trajectory-control guid-
ance ensures the generated key joint trajectory smoothly in-
terpolates between the start and the goal position. We for-
mulate the start and the goal guidance, respectively. The
start guidance is

Gstart({Cn}, X̂1) =

K∑
k=1

∥∥∥Tk(C1)− Tk(X̂1)
∥∥∥
2
, (1)

where Tk(·) is the operation to retrieve global xyz position
and 6D rotation of a k-th key joint from the input vector.
The guidance calculates the pose deviation of key joints in
the initial frame to ensure starting from the specified initial
pose. In a similar context, the goal guidance encourages the
model to generate plausible trajectories regarding the goal
condition g ∈ RK×3 as following

Ggoal({Cn}, g) =
K∑

k=1

∥Pk(CN )− gk∥2, (2)

where Pk(·) is operation to retrieve global xyz position of
k-th key joint from the data. Applying the two guidance
functions, our diffusion model can generate key-joint tra-
jectories that precisely match the user-defined positions.

Collision-Avoidance Guidance In order to prevent po-
tential collisions within the final generated motion,
Collision-Avoidance guidance is applied to assist the key
joint trajectory {Cn}. To generate collision-free full-body
movement, the guidance has to foresee the entire body
movement induced from the key joint configurations in re-
lation to the 3D scene. We provide a guidance by testing
collision on points sampled from a geometric proxy of the
body volume. Given the canonicalized key joint locations



and 6DoF pose in each frame and the body shape parameter
β, we train a two-layer MLP architecture that estimates the
parameters of two bounding boxes, each covering the upper
and lower body, as shown in Figure 3. Then, we sample a
set of points {v} ∈ V from the estimated geometries and
penalize if a point v incurs collision against the surrounding
scene S. We identify the possible collision using the signed
distance field (SDF) ΦS(·) of the scene, by measuring the
value at the queried points V . As a result, the guidance
function is written by

Gcollision({Cn},S, β) = −
∑
v∈V

1(ΦS(v) < 0), (3)

where 1 is 1 if ΦS(v) is negative, i.e., colliding with the
scene, and 0 otherwise.

In summary, our final guidance function is defined as a
weighted sum of aforementioned guidance terms λ1Gstart +
λ2Ggoal + λ3Gcollision.

3.1.2 Suggestive-Path Feature

We optionally use the suggestive-path feature Ψk for a
hand trajectory of the task of reaching an object (Task 1
in Sec. 4). In this case, Stage 1 needs planning to find a
trajectory within the cluttered scene. The suggestive-path
feature is designed to provide a reference trajectory for the
end-effector and the scene information around it.

Given the initial pose X̂1 and the goal position gj , we
first find a collision-free path of the end effector using the
path-finding algorithm [17] within the scene S. Then, we
compute geometric features along the path. Specifically, we
sample points on the extracted path at regular intervals and
extract basis point set (BPS) [46] features, estimating the
amount of free space. We concatenate the calculated path
with the BPS features computed along the path to derive
the suggestive-path features Ψk for k-th key joint. These
features are lightweight yet capable of observing the local
scene context, enabling general adaptability. When using
this feature, we build an additional feature encoder into our
network inspired by ControlNet [72].

3.2. Stage 2: Full-Body Diffusion Model

In the second stage, we generate full-body poses {Xn} from
the trajectory of key joints {Cn} and body shape parameters
β. We train another conditional diffusion model, where the
condition is given as frame-wise key-joint positions gener-
ated from the previous stage. The key joints provide de-
tailed guidance, which already takes the scene context and
the goal conditions into account, and Stage 2 can only fo-
cus on generating proper full-body motions following the
trajectory. Our network architecture integrates the Con-
trolNet [72] structure into the U-Net architecture proposed
in [28].

Figure 4. We visualize selected key joint trajectories (blue, red co-
ordinates) from Stage 1 and overlay them with the initial and last
full-body pose generated from Stage 2. We visualize only a subset
of selected key joints for better visualization. Our method success-
fully synthesizes plausible motions that match the goal conditions
as well as the scene context.

4. Experiments

Given the initial pose and a 3D scene, our pipeline gener-
ates full-body motion that avoids collision and reaches the
goal positions for the pre-defined set of key joints of the
task. All motion sequences are sampled at 30 FPS. We im-
plement our pipeline using PyTorch [43]. We use the Adam
optimizer [30] with a learning rate of 10−4 for all the ex-
periments. Training requires approximately 24 hours on a
single NVIDIA RTX 3090 GPU to cover both Stages 1 and
2. Further details, including model architecture and hyper-
parameters, are available in the supplementary material.

We provide a set of metrics to assess the success of the
task, physical plausibility, and similarity to the ground truth
motion.

• Success of the task. At a high level, the task succeeds
when a character reaches the goal position without colli-
sions. The Success rate indicates that (1) the final position
of the key joint is within a predefined distance threshold
from the specified goal, and (2) the maximum collision
between the generated body model and the scene is within
4 cm. We also calculate the average Distance to the goal.

• Physical plausibility. For each time step n, we calculate
the maximum collision distance between the human mesh
model from Xn and the given 3D scene S. If this distance
exceeds 5 cm, we consider that the collision occurred at
the frame. Then, we report the ratio of frames with colli-
sions out of all generated frames as the Collision rate.

• Motion quality. We assess the motion quality by similar-
ity to the ground truth motion. Frechet Inception Distance
(FID) evaluates overall motion quality by measuring the
distributional distance between ground truth motions and
generated motions on the test set. We use four kinds of
distance-based metrics to evaluate the difference from the
ground truth test data. HandJPE quantifies the mean hand
joint position errors. MJPE is the mean joint position er-



Method FID ↓ Success
rate (%)

Dist. to
goal (cm)

Collision
(%)

Hand JPE
(cm)

MJPE
(cm)

Root trans.
error (cm)

R
an

do
m

CIRCLE [1] 0.338 67.06 7.97 11.77 12.93 8.03 13.15
OmniControl [65] 0.372 62.40 8.03 19.43 15.84 10.59 12.09
Ours single-stage 0.391 61.55 7.55 23.81 16.05 11.57 13.54
Ours w/o collision 0.355 56.16 7.09 26.16 20.70 12.18 16.97
Ours w/o feature 0.331 66.28 7.63 13.88 15.68 9.57 11.56
Ours 0.319 69.07 7.22 11.62 13.24 8.39 10.38

Table 1. Quantitative evaluation on the reaching an object scenario. The diffusion network is trained with random splits for the training
and the test data.

Method Success
rate (%)

Dist. to goal
(cm)

MJPE
(cm)

Root trans.
error (cm)

OmniControl [65] 32.2 30.05 25.54 26.41
Ours single-stage 16.1 47.31 29.27 24.88
Ours 54.8 21.21 23.89 27.18

Table 2. Quantitative evaluation on the rock-climbing scenario.

rors in centimeters. We also compute the Root translation
error using Euclidean distance, measured in centimeters.
To demonstrate the applicability of our motion genera-

tion approach, we show successful motion generation on
several goal-driven interaction tasks (Figure 1). While the
training set-up and constraints vary for different tasks, our
two-stage pipeline finds plausible key joint trajectories fol-
lowed by the natural full-body motion (Figure 4). We pro-
vide additional tasks and further task details in supplemen-
tary materials.

Task 1: Reaching an Object Goal in a Cluttered Indoor
Scene The first task includes the indoor scenes, where
the objective is to avoid collisions against the environment
while right-hand reaches a specific goal location. Specifi-
cally, the right wrist should be within 10 cm of the specified
goal to be counted as a success. We designate the root and
right hand as the set of key joints. This scenario is trained
with the CIRCLE dataset, which contains 3138 sequences
for the task with diverse scene layouts.

We use the algorithm in CIRCLE [1] as a baseline for the
experiments. The quantitative evaluations are summarized
in Table 1. The training and test datasets are chosen ran-
domly regardless of the scene types in the dataset, and our
approach outperforms the baseline in terms of Success rate.

Task 2: Rock Climbing Guided by Multiple Goals As
a second task, we show performance on a climbing scenario
using the dataset of CIMI4D [68], where multiple key joint
goal positions are provided. Here, the task is to generate
plausible climbing motions that satisfy multiple positional
goals simultaneously. We designate both feet, and hands as
the key joint set. The success is defined by the positions of
both hands and feet at the start and end frames being within

Method Dist. to goal
(cm)

MJPE
(cm)

Root trans. error
(cm)

OmniControl [65] 15.38 14.90 12.57
Ours single-stage 21.58 19.66 25.08
Ours 14.11 13.88 10.55

Table 3. Quantitative evaluation on the contact-aware motion gen-
eration scenario.

20 cm of the designated rock location. Note that there are
eight locations for initial and final conditions to succeed in
the task.

The dataset contains only 156 sequences, and we use
125 sequences for training. The task demonstrates that our
pipeline can adapt to complex scene constraints and gener-
ate natural motion with a limited amount of motion data.
Since the 3D scenes in the dataset do not contain clutters
with narrow passages, we did not use the suggestive-path
features in this task. Table 2 compares our two-stage for-
mulation against a variation employing single-stage gener-
ation. Our two-stage pipeline demonstrates superior results
in terms of success rate and distance to goals. Due to the
lack of sufficient test data to compare distributions, we did
not report the FID score. Instead, we visualize overall mo-
tion quality in the supplementary videos.

Note that CIRCLE cannot perform the climbing task to
reach multiple goals simultaneously because of its initial-
ization scheme. CIRCLE first translates the given initial
human body to align with a specific goal point, allowing
only a single goal, and subsequently refines the motion. In
contrast, our Stage 1 effectively accommodates constraints
on multiple key joints that can constitute a unified full-body
motion.

Task 3: Contact-Aware Motion Generation We demon-
strate that our pipeline can generate motion when ex-
tra conditions for intermediate frames are provided. The
dataset [22] includes the human motion along with the
vertices-level contact, we convert it into joint-level contact
using the human body segmentation [40]. For the joints
designated as contact joints, we set their global positions as
conditions, and our goal is to generate motion while satis-
fying these conditions. Unlike other tasks, these conditions



(a) CIRCLE (c) Ours w/o collision(b) OmniControl (d) Ours (e) Ground Truth

Figure 5. Qualitative results on the reaching an object, in unseen scenes with different views. Our method faithfully adapts to the unseen
scene geometry in various episodes compared to the presented baselines.

are also specified for the intermediate frames. Since con-
tacts typically occur at the end-effectors, we designate both
feet and hands as the key joint set. Further details on the
processing steps are provided in the supplementary mate-
rials. Table 3 shows that our full pipeline outperforms the
one-stage pipeline across most metrics. We report the aver-
age distance between multiple intermediate goals instead of
the Success rate. Our pipeline can also successfully handle
multiple intermediate goals.

4.1. Efficacy of Detaching the Key-Joint Trajectory

In diffusion models, guidance sampling helps to meet spe-
cific conditions, but adding additional gradients to the sam-
ples can lead to unnatural results that deviate from the distri-
bution. In single-stage models, guidance is directly applied
during the motion generation process, which can reduce the
overall quality of the motion. In contrast, our two-stage
approach applies guidance in Stage 1 which generates key
joints trajectories only, then completes the motion based on
Stage 2. This allows us to generate more natural motion
by avoiding direct guidance during the motion generation
phase while still satisfying the conditions.

We compare the results with a single-stage version of
ours and OmniControl [65], which generates the full-body
motion directly. To provide similar guidance, we directly
extract key joint positions from the full-body motion and
calculate trajectory-control guidance compared to the spec-
ified goal. For collision-avoidance guidance, we sample
points on the surface of the full-body mesh model instead
of approximated body geometries similar to [23].

The result from the single-stage model demonstrates the
efficacy of our two-stage design. The results support that
our key joint movement successfully extracts valid key joint
trajectories that can incur natural full-body motion. Our

Stage 1 ensures generating plausible key joint trajectories
that guide natural movement for the full body in the sub-
sequent stage. The single-stage diffusion model could pro-
duce motions that satisfy the given conditions using guid-
ance sampling, however, it often generates unnatural mo-
tion, as visualized in video results. The errors measured
with respect to ground truth motion (MJPE, Root trans. er-
ror) indicate that the generated movements agree with the
captured movement in our outcome.

The advantage of designing a two-stage model is more
pronounced when tested with a scarce dataset such as our
second task (climbing). In Table 2, the single-stage diffu-
sion model suffers from limited data to express full-body
motion and severely overfits and struggles to satisfy unseen
conditions composed of multiple goals effectively. In con-
trast, the key joint diffusion model in Stage 1 can generalize
with fewer data as we decompose complex full-body motion
distribution into models with lower complexity.

Further, we report the inference speed of our method,
and baseline methods in Table 5. Since we compute guid-
ance in stage 1 which is a lightweight 100-step diffusion
model, our two-stage diffusion approach achieves faster
sampling compared to single-stage diffusion models that
calculate guidance for the entire model in the final motion
generation phase. Note that CIRCLE [1] is a feed-forward
network and handles only single-goal tasks like Task 1.

4.2. Adaptation to Unseen Conditions

Our diffusion framework can adapt to a novel scene and can
generalize interaction motions beyond the captured setup.
Table 4 contains results that deliberately use different scene
types for the training and test split, demonstrating the ability
to adapt to different scenes during the test time. Compared
to the conventional setup in Table 1, the performance gap is



Method FID ↓ Success
rate (%)

Dist. to
goal (cm)

Collision
(%)

Hand JPE
(cm)

MJPE
(cm)

Root trans.
error (cm)

Sc
en

e

CIRCLE [1] 0.471 49.75 10.72 16.31 14.23 10.32 13.84
OmniControl [65] 0.394 61.13 8.49 27.43 17.52 13.02 14.88
Ours single-stage 0.423 58.72 9.14 28.14 19.57 13.91 14.28
Ours w/o collision 0.371 52.50 7.94 31.42 22.61 14.84 16.39
Ours w/o feature 0.359 62.16 8.82 15.21 16.52 13.78 14.36
Ours 0.341 66.41 8.34 14.21 15.15 12.86 13.32

Table 4. Quantitative evaluation on the reaching an object scenario tested in novel scenes. We used different scene types for the training
and test data split.

Method CIRCLE [1] Ours Ours single-stage OmniControl [65]

Time (s) 0.28 ± 0.02 28.32 ± 0.39 52.90 ± 0.57 143.74 ± 0.71

Table 5. Inference time comparision with baselines.

(a) CIRCLE (b) OmniControl (c) Ours

Figure 6. We intentionally added additional obstacles with pink
color, and the model demonstrates the ability to generate motions
reaching a goal while avoiding collision effectively, even in unseen
environments.

more prominent compared to baseline methods. The scene
feature encoding of CIRCLE contains the whole scene from
the start to the goal during the entire movement. However,
this feed-forward approach performs well only when the
scene geometry is similar to those used in training and does
not effectively transfer to different geometry. In contrast,
our method focuses on localized geometry and performs
flexible sampling to meet the conditions within the learned
distribution, leading to improved adaptability to novel scene
geometries.

We also implement and compare against two-stage ver-
sions without collision guidance or suggestive-path fea-
tures. Motions without collision guidance deteriorate in
most quantitative measures, indicating that the term is
critical in generating more physically plausible movement
within the scene and leading to meaningful improvements
in task success rates. The ablation of our suggestive path
feature shows that it is effective in increasing success rates.

Figure 5 shows qualitative results on the generated mo-
tion sequences with challenging clutters. Starting from the
initial pose, the task is to generate a motion sequence reach-
ing the green dot with the right hand. CIRCLE reaches the
target position but cannot refine the motion in the complex
scene geometry, resulting in collisions. OmniControl or
our diffusion framework with a single stage is insufficient
and fails to consider the local geometric context or accom-

plish the target task correctly. With the proposed guidance,
our two-stage pipeline can resolve the challenging task and
generate a smooth full-body motion. Figure 6 demonstrates
that our generated motions adapt well to new environments
or obstacles, aided by collision avoidance guidance with a
two-stage pipeline.

5. Conclusions

In summary, we introduce a novel approach to generate a
goal-driven human motion. Generating motion under pre-
defined target positions for specific body joints enables in-
tuitive motion synthesis and precise control over character
animation. Our two-stage framework can handle a com-
plex goal-driven scenario by solving simpler sub-problems.
Especially in cluttered scenarios, our collision-avoidance
guidance and lightweight scene interaction features facil-
itate the generation of scene-aware motion. We demon-
strate the performance of our pipeline in diverse scenarios,
including cases that require rich interaction with multiple
goals. Because our model is capable of flexible sampling
with minimal data, our pipeline can synthesize natural goal-
driven motion even with a limited amount of data.

Future Works Since the datasets we used do not provide
detailed hand motions, our model lacks sophisticated in-
teractions such as grasping objects or navigating climbing
rocks. A potential research direction is in the integration
of kinematic body motion priors and hand-object interac-
tion priors [2] learned through physics simulators. Also,
our method includes several task-specific designs, such as
manually selected key joints or task-dependent features. Al-
though these designs improve performance in specific tasks,
they reduce the scalability of the framework. To address
this, key joints could be automatically selected using large
language models (LLMs), which can infer relevant joints
for each task. Training a unified network across multiple
datasets could be another future direction.
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